If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+248=0
a = -16; b = 0; c = +248;
Δ = b2-4ac
Δ = 02-4·(-16)·248
Δ = 15872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15872}=\sqrt{256*62}=\sqrt{256}*\sqrt{62}=16\sqrt{62}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{62}}{2*-16}=\frac{0-16\sqrt{62}}{-32} =-\frac{16\sqrt{62}}{-32} =-\frac{\sqrt{62}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{62}}{2*-16}=\frac{0+16\sqrt{62}}{-32} =\frac{16\sqrt{62}}{-32} =\frac{\sqrt{62}}{-2} $
| -7x-8(1+x)=-4x-19 | | -7(3x-8)=-21x+56 | | 17-19w=-38 | | -24=v/5-4 | | 59=-2(x-8)-(3x-3) | | 59=2(x-8)-(3x-3) | | 2m+4=m+4 | | 11(x+12)=149 | | 20=x+20 | | 10=2/9u | | 4x+1+x+3=49 | | 4x^2+12x+58=0 | | -2y=6y-6 | | 7x+3x-x-4=14 | | 6/19.5=x | | 8(x+1007-3=837 | | -13(x+20)=-11×(x+38) | | 5x/3+2=4 | | -10.4=2.1+x/5 | | 9+b/6=8 | | 2p-7p=-5 | | -13×x+20=-11×x+38 | | 25-7x=-(-7-3x)-7x | | 34m+2=23m+5 | | 7z-z-3z=12 | | 22.5x=(3x+6) | | 3x=-12x+50 | | -13×x+20=-11x+38 | | 19z-16z-4z=-6 | | 3n-1=33 | | 75-3.5y-4y=4y+6. | | 11g-11g+4g-3g+2g=9 |